f08 — Least-squares and Eigenvalue Problems (LAPACK) f08hqc

NAG C Library Function Document
nag zhbevd (f08hqc)

1 Purpose

nag_zhbevd (f08hqc) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian band matrix. If the eigenvectors are requested, then it uses a divide-and-conquer algorithm to
compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker—Kahan variant of the QL or QR algorithm.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_zhbevd (Nag_OrderType order, Nag_JobType job, Nag_UploType uplo,
Integer n, Integer kd, Complex ab[], Integer pdab, double w[], Complex z[],
Integer pdz, NagError *fail)

3 Description

nag_zhbevd (f08hqc) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian band matrix 4. In other words, it can compute the spectral factorization of 4 as

A=27ZAZ",

where A is a real diagonal matrix whose diagonal elements are the eigenvalues);, and Z is the (complex)
unitary matrix whose columns are the eigenvectors z;. Thus

AZi:)\iZi’ i:1,2,...,n.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Arguments
1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job — Nag JobType Input
On entry: indicates whether eigenvectors are computed.
job = Nag DoNothing

Only eigenvalues are computed.

[NP3660/8] f08hgc.1

f08hqc NAG C Library Manual

job = Nag EigVecs
Eigenvalues and eigenvectors are computed.

Constraint: job = Nag_DoNothing or Nag EigVecs.

3: uplo — Nag_UploType Input
On entry: indicates whether the upper or lower triangular part of 4 is stored.
uplo = Nag_Upper
The upper triangular part of 4 is stored.
uplo = Nag Lower
The lower triangular part of 4 is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

4: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

5: kd — Integer Input
On entry: if uplo = Nag_Upper, the number of superdiagonals, &, of the matrix A.
If uplo = Nag_Lower, the number of subdiagonals.

Constraint: kd > 0.

6: ab[dim] — Complex Input/Output
Note: the dimension, dim, of the array ab must be at least max(1, pdab X n).

On entry: the n by n Hermitian band matrix 4 with k& sub- or super-diagonals. This is stored as a
notional two-dimensional array with row elements or column elements stored contiguously. Just the
upper or lower triangular part of the array is held depending on the value of uplo. The storage of
elements a;; depends on the order and uplo arguments as follows:

if order = Nag_ColMajor and uplo = Nag Upper,
a; is stored in ablk+i—j+(j—1)xpdab], for i=1,...,n and
j=1i,...,min(n,i+k);
if order = Nag ColMajor and uplo = Nag_Lower,
a; is stored in ab[i —j+ (j — 1) x pdab], fori =1,...,n and j = max(1,i — k),...,i

if order = Nag RowMajor and uplo = Nag_Upper,

a; is stored in ab[j —i+ (i — 1) x pdab], fori = 1,...,nand j = i,...,min(n,i + k);
if order = Nag RowMajor and uplo = Nag_Lower,
a; is stored in ablk+j—i+(i—1)xpdab], for i=1,...,n and

j=max(l,i—k),...,i

On exit: A is overwritten by the values generated during the reduction to tridiagonal form.
If uplo = Nag_Upper, the first superdiagonal and the diagonal of the tridiagonal matrix are returned
in rows kd and kd + 1 of the array ab, respectively.

If uplo = Nag Lower, the diagonal and the first subdiagonal of the tridiagonal matrix are returned
in the first two rows of the array ab.
7: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix 4 in the array ab.

Constraint: pdab > kd + 1.

f08hgc.2 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08hqc

10:

11:

6

w[dim] — double Output
Note: the dimension, dim, of the array w must be at least max(1,n).

On exit: the eigenvalues of the matrix 4 in ascending order.

z|[dim] — Complex Output
Note: the dimension, dim, of the array z must be at least

max(1,pdz x n) when job = Nag_EigVecs;
1 when job = Nag_DoNothing.

If order = Nag_ColMajor, the (7,/)th element of the matrix Z is stored in z[(j — 1) x pdz +i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix Z is stored in z[(i — 1) x pdz +j — 1].

On exit: if job = Nag EigVecs, z is overwritten by the unitary matrix Z which contains the
eigenvectors of 4. The ith column of Z contains the eigenvector which corresponds to the
eigenvalue w[i].

If job = Nag_DoNothing, z is not referenced.

pdz — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:
if job = Nag_EigVecs, pdz > max(1l,n);
if job = Nag_DoNothing, pdz > 1.
fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_CONVERGENCE

The algorithm failed to converge, (value) elements of an intermediate tridiagonal form did not
converge to zero.

NE_ENUM_INT 2

On entry, job = (value), n = (value), pdz = (value).
Constraint: if job = Nag DoNothing, pdz > 1.

On entry, job = (value), n = (value), pdz = (value).
Constraint: if job = Nag_EigVecs, pdz > max(1,n)

On entry, pdz = (value), job = (value), n = (value).
Constraint: if job = Nag_EigVecs, pdz > max(1,n);
if job = Nag_DoNothing, pdz > 1.

NE_INT

On entry, kd = (value).
Constraint: kd > 0.

[NP3660/8] f08hgc.3

f08hqc NAG C Library Manual

On entry, n = (value).
Constraint: n > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdz = (value).
Constraint: pdz > 0.

NE_INT 2

On entry, pdab = (value), kd = (value).
Constraint: pdab > kd + 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix (4 + E), where
1E]l; = O(e) |4,

and ¢ is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Further Comments

The real analogue of this function is nag_dsbevd (fO8hcc).

9 Example

To compute all the eigenvalues and eigenvectors of the Hermitian band matrix 4, where

1400 2—-1i 3—-1i 040i 040:
241 240i 3-2i 4-2i 0+0i
A=1|34+1i 342 340i 4-3i 5-3i
0+0i 442 4+3i 44+0i 5—4
0+0i 04+0i 5+3i 5+4i 5+0i

9.1 Program Text
/* nag_zhbevd (f08hgc) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, k, kd, n, pdab, pdz, w_len;
Integer exit_status=0;
NagError fail;
Nag_JobType job;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */

08hqgc.4 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

char uplo_char[2], job_char[2];
Complex *ab=0, *z=0;
double *w=0;

#ifdef NAG_COLUMN_MAJOR
#define AB_UPPER(I,J) ab[(J-1)*pdab

+
-
+
—
1
[
1
=

#define AB_LOWER(I,J) ab[(J-1)*pdab + I - J]
order = Nag_ColMajor;

#else

#define AB_UPPER(I,J) ab[(I-1)*pdab + J - I]

#define AB_LOWER(I,J) ab[(I-1)*pdab
order = Nag_RowMajor;
#endif

+
o
+
[
I
H
I
=

INIT_FAIL(fail);
Vprintf ("nag_zhbevd (£08hgc) Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*x[*\n] ");

Vscanf ("$1d%1ds*["\n] ", &n, &kd);

pdab = kd + 1;

pdz = n;

w_len = n;

/* Allocate memory */

if (!(ab = NAG_ALLOC(pdab * n, Complex)) ||
I (w = NAG_ALLOC(w_len, double)) ||

1 (z = NAG_ALLOC(n * n, Complex)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥

/* Read whether Upper or Lower part of A is stored */
Vscanf (" ' %1s ’'%*["\n] ", uplo_char);

if (*(unsigned char #*)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
/* Read A from data file =*/
k = kd + 1;
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = i; j <= MIN(i+kd,n); ++3j)
{
Vscanf (" (%1f , %1f)", &AB_UPPER(i,Jj).re,
&AB_UPPER(i,j) .im);
3
}
Vscanf ("sx["\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = MAX(1,i-kd); j <= i; ++3)
{
Vscanf (" (%1f , %1f)", &AB_LOWER(i,Jj).re,
&AB_LOWER(i,J) .im) ;
3
}
Vscanf ("s*[*\n] ");
}
[NP3660/8]

f08hqc

f08hqgc.5

f08hqc NAG C Library Manual

/* Read type of job to be performed *x/
Vscanf (" ' %1s ’'%$*["\n] ", job_char);

if (*(unsigned char =*)job_char == 'V’)
job = Nag_EigVecs;
else

job = Nag_DoNothing;
/* Calculate all the eigenvalues and eigenvectors of A *x/
/* nag_zhbevd (£f08hqgc).
* All eigenvalues and optionally all eigenvectors of
* complex Hermitian band matrix (divide-and-conquer)
*
/
nag_zhbevd(order, job, uplo, n, kd, ab, pdab, w, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from nag_zhbevd (£08hqgc).\n%s\n", fail.message) ;
exit_status = 1;
goto END;

}

/* Print eigenvalues and eigenvectors =*/
Vprintf (" Eigenvalues\n");
for (i = 0; i < n; ++1)
Vprintf (" %51d %8.4f\n", i+1, wlil);
Vprintf ("\n") ;
/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/
nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, Nag_AboveForm, "%7.4f", "Eigenvectors",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
¥
END:
if (ab) NAG_FREE (ab) ;
if (w) NAG_FREE (w) ;
if (z) NAG_FREE(z);
return exit_status;

9.2 Program Data
nag_zhbevd (£08hqgc) Example Program Data

5 2 :Values of N and KD
'L’ :Value of UPLO
(1.0, 0.0)

(2.0, 1.0) (2.
(3.0, 1.0) (3.
4

.0) (5.0, 4.0) (5.0, 0.0) :End of matrix A
v’ :Value of JOB

9.3 Program Results

nag_zhbevd (f08hgc) Example Program Results

Eigenvalues

1 -6.4185
2 -1.4094
3 1.4421
4 4.4856
5 16.9002
Eigenvectors
1 2 3 4 5

f08hqgc.6 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

1 -0.2591
-0.0000
2 0.0245
0.4344
3 0.5159
-0.1095
4 0.0004
-0.5093
5 -0.4333
0.1353

0.
-0.

-0.
0.

-0.
-0.

6367
0000

2578
2413

3039
3481

.3450
.0832

.2469
.2634

0.
-0.

-0.
-0.

0.
0.

-0

-0.

0.
0.

4516 O.
0000 -0.
3029 O.
4402 O.
3160 O.
2978 0.
.4088 -0.
3213 0.
0204 O.
2262 -0.

5503
0000

4785
2759

2128
0465

1707
0200

0175
5611

.1439
.0000

.3060
.0411

.4681
.2306

.4098
.3832

.1819
.5136

f08hqc

[NP3660/8]

f08hqgc.7 (last)

	f08hqc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	job
	uplo
	n
	kd
	ab
	pdab
	w
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONVERGENCE
	NE_ENUM_INT_2
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

